《平行四边形的面积》教学设计 《平行四边形的面积》教案设计
大家好,我是东南,我来为大家解答以上问题《平行四边形的面积》教学设计,《平行四边形的面积》教案设计很多人还不知道,现在让我们一起来看看吧!
作为一位无私奉献的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。教案要怎么写呢?以下是小编帮大家整理的《平行四边形的面积》教案设计,希望能够帮助到大家。
《平行四边形的面积》教案设计1
一、教学目标
(一)知识与技能
让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握平行四边形面积计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?
预设学生回答:长方形的面积=长宽,正方形的面积=边长边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入多边形的面积的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量平行四边形的面积。
(1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数平行四边形的面积,再互相交流。
预设平行四边形的面积:
方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。
长方形的面积:长6米,宽4米,面积是64=24(平方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底高。
【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?
这个平行四边形的面积恰好等于底高,那是不是所有的平行四边形的面积都等于底高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)
参考答案:12cm2;18.72cm2;4.8cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)
【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量观察猜测转化验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
《平行四边形的面积》教案设计2
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:平行四边形面积的计算。
教学难点:平行四边形面积公式的推导过程。
教学准备:学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学P44~P45有关内容
集体交流:S=a×h
S=a·h
S=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a)例题
学生列式解答,并说出列式的根据。
b)做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3.5厘米,底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
《平行四边形的面积》教案设计3
教学目标:
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3、对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2、好,下面谁来说一说你找到了哪些学过的图形?
3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的'面积相比较相等,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽
平行四边形的面积=底高
S=ah
S=ah或S=ah
《平行四边形的面积》教案设计4
目标:
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
教学准备:多媒体、平行四边形纸片、剪刀、三角尺。
一、创设情境
同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?
师:你们准备怎样解决呢?
生:分别算出长方形和平行四边形的面积就行了。
师:谁来说怎样计算长方形的面积?
生:长方形的面积等于长乘宽。
师:怎样列式?(10×6=60平方米)
师:求长方形的面积有公式很方便,那你会算平行四边形的面积吗?
生:-------
师:那么今天我们就来研究怎样求平行四边形的面积.(板书课题:平行四边形的面积)
二、探究新知
1、学生尝试解决,
师:同学们,仔细观察这块平行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。
学生活动,独立尝试解决。
教师巡视,
2、反馈学生尝试计算结果。
师:同学们有结果了吗?
学生汇报结果。
师:求一个图形的面积出现了这么多的结果,可能吗?(不可能)
到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出平行四边形纸,通过剪、拼的方法把这个平行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。
3、学生汇报验证过程。
师:请你上台把这过程演示一遍。
学生演示。
师:我想问一下,你这一剪是随便剪的吗?
生:不是,是沿高剪的。
师:哦,这位同学是这样剪的。
师:不错,谁还有不同的剪法?
学生汇报。
师:大家听明白了吗?这两个同学都是沿着平行四边形的一条高剪开,将平行四边形转化成一个长方形。看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。
师:现在,我请一位同学用老师的教具把平行四边形转化的过程再演示一遍。谁来上台演示?
师:大家边看边想:转化后的长方形和原来的平行四边形比,什么变了?什么不变?
生:形状变了,面积没有变。
师:面积没有变,也就是――(转化后长方形的面积与原来的平行四边形的面积相等。)
师:非常正确!
师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的平行四边形的底和高有什么关系?
师演示教具。
生:转化后的长方形,长与原来的平行四边形的底相等,宽与原来平行四边形的高相等。
师:说得真好。那现在平行四边形的面积你们会算了吗?
生:平行四边形的面积等于底乘高。
师:不错。如果用S表示平行四边形的面积,用a表示底,用h表示高,平行四边形的面积公式用字母怎样表示呢?
学生说完,师完成板书:长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示:S=a×h=ah
师:同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲
请同学们打开数学书81页,把平行四边形的面积公式补充完整。这个面积公式适用于所有的平行四边形。
师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说平行四边形的面积是怎样推导出来的,(出示课件)你会填吗?
4、解决问题
师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?
生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。
师:谢谢你们为小熊和小兔解决了交换菜地的问题。
师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生尝试练习,生上台板演。
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
生:底和高。
师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。
三、巩固练习
1、计算下列图形的面积。
师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。
生上台板演。
师:同学们,算完了吗?我们来看看这位同学做对了没有?
师:今后我们在求平行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。
师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?
2、课本82页第2题。
师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做?女生算第1个图形,男生算第2个图形。我们比一比
学生上台展示。,
3、考考你。
师:比完了,接下来老师又要出题目考你们了。
4、小小设计师。
师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24平方分米,那么底和高各是多少分米?(底和高都是整数)
四、小结
师:今天这节课的知识你们是怎样学会的呢?
师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。
本文到此讲解完毕了,希望对大家有帮助。