等差数列的三个公式(高中数学数列公式大全)
大家好,我是小东,我来为大家解答以上问题。等差数列的三个公式,高中数学数列公式大全很多人还不知道,现在让我们一起来看看吧!
1、等比数列: 若q=1 则S=n*a1 若q≠1 推倒过程: S=a1+a1*q+a1*q^2+……+a1*q^(n-1) 等式两边同时乘q S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^ 1式-2式 有 S=a1*(1-q^n)/(1-q) 等差数列 推倒过程: S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d) 把这个公式倒着写一遍 S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1 上两式相加有 S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2 一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
2、 等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
3、 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。
4、 , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。
5、 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
6、 和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 项数=(末项-首项)/公差+1 等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别 时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。
7、 若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。
8、 若为等差数列,且有an=m,am=n.则a(m+n)=0。
9、 等比数列: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
10、这个常数叫做等比数列的公比,公比通常用字母q表示。
11、 (1)等比数列的通项公式是:An=A1*q^(n-1) (2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an, 等比中项:aq·ap=2ar ar则为ap,aq等比中项。
12、 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
13、在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
14、 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。
15、 等比数列在生活中也是常常运用的。
16、 如:银行有一种支付利息的方式---复利。
17、 即把前一期的利息赫本金价在一起算作本金, 在计算下一期的利息,也就是人们通常说的利滚利。
18、 按照复利计算本利和的公式:本利和=本金*(1+利率)存期 。
本文到此讲解完毕了,希望对大家有帮助。